

Power Rangers

Meaghan Hannon, Anjola Ladenegan, Sarah Ritter, Evan Syers

Introduction

Challenge: Project involving power that is cheap, safe, and involves a microcontroller

Met with Dr. Lemmon and came up with a project involving a solar cell array he has

Will involve concepts from Power Electronics and Alternative Energy Devices

Solar cell cart

Problem – Big Picture

 Characteristic solar cell production versus time of day:

3

Problem – Big Picture

Typical load of a distribution network:

Problem

 Voltage where max power is achieved changes during the day

The College of Engineering at the University of Notre Dame 5

Problem

- Batteries will only charge if the potential is higher than the battery voltage
- Higher voltages equate to lower current and less efficient charging

Solution

- "Power Point" tracker so that solar array is always generating maximum power
- Variable DC-DC converter to charge at optimum voltage

Demonstration

- Data-heavy
 - Comparison of power generated with power point tracking versus without
 - Comparison of charging battery with variable converter versus without
- Demonstration of stopping the charging when full

8

Videos

Available Technologies

- Solar Cells and Batteries available
- Devices for converter circuit- FET, Diode, Inductor, Capacitors
- Microcontroller to implement power point tracking algorithm

9

Specs of the Solar Array Important Specifications:

Max Power: 100W Nominal Voltage: 12V **Maximum Voltage: 18.5V** Open Circuit Voltage: 22.7 V Cell Efficiency: 17%

Battery Specification:

Nominal Voltage: 12V

5V		
2.7	XXXX	

RAMSOND

Sensible Solutions

Alternative Energy Division Solar Modules

10 Monc

	Tec	chnical Deta	ils
Model			SP100 125x125x36
Cell Material			Mono Crystalline
Maximum Power		Watts	100 Watts
Cell Grade		A,B,C,D	A
Nominal Voltage		Volts	12 V
Maximum Voltage (Vmp)		Volts	18.5 V
Open Circuit Voltage (Voc)		Volts	22.7 V
Maximum Current (Imp)		Amp	5.41 A
Short Circuit Current (Isc)		Amp	5.55 A
Maximum System Voltage		Volts	600 V
Cell Efficiency		%	17%
Dimensions	Length	Inch	47"
	Width	Inch	21 5/8"
	Thickness	Inch	1 9/16"
Weight		Lbs	16.5 lbs
Cell Size			125x125 mm
Cell Quantity			36
Frame Structure (Material)			Extruded Anodized Heavy Duty Aluminum
Encapsulation			EVA
Rear Side			DuPont [®] Tedlar [™] (TPT)
Glass Thicknes	ss	Inch	1/8" 3.2mm
Max. Wind Res	sistance	65 m/s – 145 MPH	
Max. Hail Diam	neter Size / Sp	1+ Inch @ 50 mph	
Max. Load Capacity			200 kg / m ²

Engineering Aspects

- Building a converter that can take a given input voltage and a desired output voltage and achieve the desired ratio with good efficiency
- Implementing the algorithm for achieving the ideal power point

11

 Control circuitry to stop the battery from charging when full

Conclusion

- If successful, could be very important in demonstrating how to store solar energy effectively
- How we generate and distribute power is going to change drastically over our lifetime – need to be ready for changes

12

